Ruhl Forensic Leader in Forensic Technology


Technical Papers

SAE 2007-01-0758
The Experimental Study of the Air Flow Produced by Road Vehicles and its Potential Destabilizing Effect on Nearby Pedestrians

Strauss, Mark G., Louis V. Inendino and James V. Carnahan

The air movement produced by various types of road vehicles has been experimentally determined in order to evaluate the potential of this air flow to destabilize nearby pedestrians. Six vehicles are used, as small as an automobile and as large as a tractor-trailer combination, driven at speeds ranging from 20 to 50 mph (23 to 80 kph), at distances to sensors of two to six feet (0.6 to 1.8m), in order to quantify some of the chaotic effects of the air motion generated by these vehicles, and specifically, what destabilizing effect it can have on nearby pedestrians. For each combination of testing variables, the peak air speed, relative temporal gust occurrence, and settling time to ambient conditions were measured. The results are analyzed, and a discussion is provided regarding the relation of factors, such as vehicle speed and the distance to the speed sensor, to the magnitude of the maximum air speed recorded. For all tests and conditions, the maximum vehicle-induced air speed was measured to be 25.3 mph (40.7 kph), and that was observed during a test with a cab-over tractor attached to a semi-trailer. It was determined that the vehicle-induced air speeds increased as vehicle speeds increased and as the sizes of the vehicles increased. It was found that the variations in vehicle-induced air speed are not explained by the distance from the side of the passing vehicle, within the tested distance ranges.

For a complete copy of this paper, contact:

Society of Automotive Engineers
400 Commonwealth Drive
Warrendale, PA 15096-0001
(724)776-4841 (Phone)
(724)776-5760 (Fax)

Technical Papers

SAE 2013-01-0785
The Accuracy of Pedestrians in Estimating the Speed of a Moving Vehicle

SAE 2010-01-0046
Observed Errors in Distance Estimation

SAE 2007-01-0758
The Experimental Study of the Air Flow Produced by Road Vehicles and its Potential Destabilizing Effect on Nearby Pedestrians

SAE 2006-01-3557
Usable Models for Free and Forced Cooling of Commercial Vehicle Drum Brakes

SAE 2006-01-3556
Comparison of Established Heavy Brake Heating / Cooling Models with HVE Brake Designer in a Real Mountain Accident

Commercial Vehicle Onboard Electronics - Global Positioning Systems, Engine Control Modules and Safety Systems and Devices

Analysis of a Common Cause Hypothesis in a Forensic Product Defect Analysis

SAE 2004-01-2717
Safety Concerns in Automatic Control of Heavy-Duty Articulated Vehicles

SAE 2003-01-3393
Numerical Methods for Evaluating ECM Data in Accident Reconstruction and Vehicle Dynamics

SAE 2003-01-3363
Development of a Dynamic Model of an Air-ride Seat for On-highway Trucks

SAE 2003-01-3419
Simulation of Intelligent Convoy with Autonomous Articulated Commercial Vehicles

SAE 2002-01-3104
Factors Affecting the Friction Coefficients Between Wooden and Plastic Pallets and the Wooden Floor Of A Van-type Semi-trailer

SAE 2002-01-1566
Overview of Carat-4, a Multi-body Simulation and Collision Modeling Program

SAE 2001-01-2755
Factors Affecting the Friction Coefficients Between Wooden Pallets and the Wooden Floor of a Van-type Semi-trailer

SAE 2000-01-3476
Fluid Load Analysis Within the Static Roll Model

The Post-Kumho Exclusion of a Traffic Accident Reconstruction Expert

SAE 1999-01-3782
A Prototype Computer Based Test System to Test Commercial Vehicle Air Brake Systems: Application and Test Results

SAE 1999-01-3732
Dynamics and Roll Stability of a Loaded Class 8 Tractor-Livestock Semi-Trailer

SAE 973261
Prediction of Steady State Roll Threshold for Loaded Flat Bed Trailers - Theory and Calculation

SAE 971033
Ventilated Brake Rotor Air Flow Investigation

SAE 900106
Skidmark Signatures of ABS-Equipped Passenger Cars

SAE 880066
Combining Scene Data with Trajectory Information for Effective Accident Simulation